hyperbolic cosine - translation to russian
Diclib.com
ChatGPT AI Dictionary
Enter a word or phrase in any language 👆
Language:

Translation and analysis of words by ChatGPT artificial intelligence

On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:

  • how the word is used
  • frequency of use
  • it is used more often in oral or written speech
  • word translation options
  • usage examples (several phrases with translation)
  • etymology

hyperbolic cosine - translation to russian

MATHEMATICAL FUNCTION RELATED WITH TRIGONOMETRIC FUNCTIONS
Osborne's rule; Hyperbolic tangent; Hyperbolic sine; Hyperbolic cosine; Coth; Csch; Sech (function); Hyperbolic function; Hyperbolic secant; Hyperbolic trigonometric function; Tanh; Hyperbolic trig identities; Hyperbolic sin; Hyperbolic cosecant; Hyperbolic cotangent; Hyperbolic polar sine; Hyperbolic map; Hyperbolic trig functions; Hyperbolic trigonometric functions; Osborne rule; Hyperbolic curve; Hyperbolic sinusoid; Osborn's Rule; Sinh(x); Cosh(x); Tanh(x); Hyperbolic tan; Hyperbolic identities; Ctanh; Sinus hyperbolicus; Hyperbolic tangent function; Hyperbolic sinus; Coth(x); Osborn's rule; Cosh (mathematical function); Cosinus hyperbolicus; Tangens hyperbolicus; Cosecans hyperbolicus; Cotangens hyperbolicus; Secans hyperbolicus; Hyberbolic sine; Hyberbolic cosine; Hyberbolic tangent; Hyberbolic cotangent; Hyberbolic secant; Hyberbolic cosecant; Cosech; Sh (mathematical function); Ch (mathematical function); Th (mathematical function); Cth (mathematical function); Sinh (mathematical function); Hyperbolic ‍secant; Tanh (mathematical function); Hyper-sine
  • u}}.
  • ''e''<sup>−''x''</sup>}}
  • ''e''<sup>−''x''</sup>}}
  • animated version]] with comparison with the trigonometric (circular) functions).

hyperbolic cosine         

общая лексика

гиперболический косинус

inverse hyperbolic cosine         
INVERSE FUNCTION OF THE HYPERBOLIC FUNCTION
Arccosh; Arccoth; Arccsch; Arcsech; Inverse hyperbolic cosine; Inverse hyperbolic cotangent; Inverse hyperbolic cosecant; Inverse hyperbolic secant; Inverse hyperbolic sine; Inverse hyperbolic tangent; Arcsinh; Arctanh; Area hyperbolic cosecant; Area hyperbolic cosine; Area hyperbolic cotangent; Area hyperbolic functions; Area hyperbolic secant; Area hyperbolic sine; Area hyperbolic tangent; Hyperbolic inverse functions; Arcth; Arsinh; Arcosh; Artanh; Arcoth; Arsech; Arcsch; Arcsinh(x); Arccosh(x); Arctanh(x); Acosh; Hyperbolic arc tangent; Atanh; Asinh; Ar (function prefix); Sinh−1(x); Sinh−1; Argsinh; Cosh−1(x); Cosh−1; Argcosh; Tanh−1(x); Tanh−1; Argtanh; Coth−1(x); Coth−1; Acoth; Argcoth; Sech−1(x); Sech−1; Asech; Argsech; Argcsch; Acsch; Csch−1; Csch−1(x); Area sinus hyperbolicus; Area cosinus hyperbolicus; Area tangens hyperbolicus; Area secans hyperbolicus; Area cosecans hyperbolicus; Area cotangens hyperbolicus; Arcosech; Arsh (mathematical function); Arch (mathematical function); Arth (mathematical function); Arcth (mathematical function); Area function (inverse hyperbolic function); Hyberbolic inverse function; Inv sinh; Inv cosh; Inv tanh; Inv coth; Inv sech; Inv csch; Anti-hyperbolic functions; Anti-hyperbolic function; Antihyperbolic functions; Antihyperbolic function; Hyperbolic arc sine; Hyperbolic arc cosine; Hyperbolic arctangent; Inverse hyperbolic function
ареа-косинус гиперболический
area hyperbolic cosine         
INVERSE FUNCTION OF THE HYPERBOLIC FUNCTION
Arccosh; Arccoth; Arccsch; Arcsech; Inverse hyperbolic cosine; Inverse hyperbolic cotangent; Inverse hyperbolic cosecant; Inverse hyperbolic secant; Inverse hyperbolic sine; Inverse hyperbolic tangent; Arcsinh; Arctanh; Area hyperbolic cosecant; Area hyperbolic cosine; Area hyperbolic cotangent; Area hyperbolic functions; Area hyperbolic secant; Area hyperbolic sine; Area hyperbolic tangent; Hyperbolic inverse functions; Arcth; Arsinh; Arcosh; Artanh; Arcoth; Arsech; Arcsch; Arcsinh(x); Arccosh(x); Arctanh(x); Acosh; Hyperbolic arc tangent; Atanh; Asinh; Ar (function prefix); Sinh−1(x); Sinh−1; Argsinh; Cosh−1(x); Cosh−1; Argcosh; Tanh−1(x); Tanh−1; Argtanh; Coth−1(x); Coth−1; Acoth; Argcoth; Sech−1(x); Sech−1; Asech; Argsech; Argcsch; Acsch; Csch−1; Csch−1(x); Area sinus hyperbolicus; Area cosinus hyperbolicus; Area tangens hyperbolicus; Area secans hyperbolicus; Area cosecans hyperbolicus; Area cotangens hyperbolicus; Arcosech; Arsh (mathematical function); Arch (mathematical function); Arth (mathematical function); Arcth (mathematical function); Area function (inverse hyperbolic function); Hyberbolic inverse function; Inv sinh; Inv cosh; Inv tanh; Inv coth; Inv sech; Inv csch; Anti-hyperbolic functions; Anti-hyperbolic function; Antihyperbolic functions; Antihyperbolic function; Hyperbolic arc sine; Hyperbolic arc cosine; Hyperbolic arctangent; Inverse hyperbolic function

математика

гиперболический ареа-косинус

Definition

tanh
[tan'e?t?, tan?, ?an]
¦ abbreviation Mathematics hyperbolic tangent.

Wikipedia

Hyperbolic functions

In mathematics, hyperbolic functions are analogues of the ordinary trigonometric functions, but defined using the hyperbola rather than the circle. Just as the points (cos t, sin t) form a circle with a unit radius, the points (cosh t, sinh t) form the right half of the unit hyperbola. Also, similarly to how the derivatives of sin(t) and cos(t) are cos(t) and –sin(t) respectively, the derivatives of sinh(t) and cosh(t) are cosh(t) and +sinh(t) respectively.

Hyperbolic functions occur in the calculations of angles and distances in hyperbolic geometry. They also occur in the solutions of many linear differential equations (such as the equation defining a catenary), cubic equations, and Laplace's equation in Cartesian coordinates. Laplace's equations are important in many areas of physics, including electromagnetic theory, heat transfer, fluid dynamics, and special relativity.

The basic hyperbolic functions are:

  • hyperbolic sine "sinh" (),
  • hyperbolic cosine "cosh" (),

from which are derived:

  • hyperbolic tangent "tanh" (),
  • hyperbolic cosecant "csch" or "cosech" ()
  • hyperbolic secant "sech" (),
  • hyperbolic cotangent "coth" (),

corresponding to the derived trigonometric functions.

The inverse hyperbolic functions are:

  • area hyperbolic sine "arsinh" (also denoted "sinh−1", "asinh" or sometimes "arcsinh")
  • area hyperbolic cosine "arcosh" (also denoted "cosh−1", "acosh" or sometimes "arccosh")
  • and so on.

The hyperbolic functions take a real argument called a hyperbolic angle. The size of a hyperbolic angle is twice the area of its hyperbolic sector. The hyperbolic functions may be defined in terms of the legs of a right triangle covering this sector.

In complex analysis, the hyperbolic functions arise when applying the ordinary sine and cosine functions to an imaginary angle. The hyperbolic sine and the hyperbolic cosine are entire functions. As a result, the other hyperbolic functions are meromorphic in the whole complex plane.

By Lindemann–Weierstrass theorem, the hyperbolic functions have a transcendental value for every non-zero algebraic value of the argument.

Hyperbolic functions were introduced in the 1760s independently by Vincenzo Riccati and Johann Heinrich Lambert. Riccati used Sc. and Cc. (sinus/cosinus circulare) to refer to circular functions and Sh. and Ch. (sinus/cosinus hyperbolico) to refer to hyperbolic functions. Lambert adopted the names, but altered the abbreviations to those used today. The abbreviations sh, ch, th, cth are also currently used, depending on personal preference.

What is the Russian for hyperbolic cosine? Translation of &#39hyperbolic cosine&#39 to Russian